
Driver Domain Bring-Up Under Xen-powered Environment on ARM

Platforms

In the following article I want to describe GlobalLogic’s team experience of bring-up a
driver domain on ARM platform. The results that we have achieved with a driver domain
were introduced at CES 2015 show and GENIVI event.

What is a driver domain and why it is needed

This article follows the topic described in Device Passthrough to Driver Domain in
Xen - http://wiki.xenproject.org/wiki/File:Device_passthrough_xen.pdf - where basic
concepts of driver domains are described together with hardware passthrough to guest
domains.

Driver domains on Nautilus platform

In this article I will refer to the Nautilus solution, which we are currently developing. It
successfully runs three driver domains under a Xen hypervisor:
- Cluster domain, which runs automotive-related stuff, manages a hardware video
camera and CAN. Based on Linux 3.14.
- Linux driver domain, which controls almost all hardware, runs PV drivers and
backends drivers. Based on Linux 3.14.
- Android KitKat guest domain, which manages a hardware video decoder (an image
processor unit, also known as IPU remote processor). It is used for infotainment
purposes, such as Internet browsing, audio playback, etc.

Driver domains on SMMU-less platforms

One of the most important issues, which has to be solved during a driver domain bring-
up is DMA access in driver domain. This strictly depends on SMMU / IOMMU
availability. If it is installed, DMA operations may be used securely in a driver domain,
otherwise the only way is to use 1:1 physical-to-machine memory mapping in a driver
domain the same way as in domain 0. Jacinto6, which currently runs Nautilus, doesn’t
have SMMU, so a driver domain on it is mapped 1:1. Also, as in domain 0, a SWIOTLB
feature has to be enabled (https://blog.xenproject.org/2013/08/14/swiotlb-by-morpheus
) and xen_dma_ops has to be used for DMA operations.

Steps to bring-up a driver domain: GlobalLogic experience

● Prepare a domain config file for xl create tool. In this file it is necessary to specify

all iomem regions and interrupts, which will be mapped to a driver domain for the
following usage in platform drivers. Typically, these resources are similar to the
ones defined in a device tree blob.

http://wiki.xenproject.org/wiki/File:Device_passthrough_xen.pdf
http://wiki.xenproject.org/wiki/File:Device_passthrough_xen.pdf
http://wiki.xenproject.org/wiki/File:Device_passthrough_xen.pdf
http://wiki.xenproject.org/wiki/File:Device_passthrough_xen.pdf
http://wiki.xenproject.org/wiki/File:Device_passthrough_xen.pdf
http://wiki.xenproject.org/wiki/File:Device_passthrough_xen.pdf
http://wiki.xenproject.org/wiki/File:Device_passthrough_xen.pdf
http://wiki.xenproject.org/wiki/File:Device_passthrough_xen.pdf
http://wiki.xenproject.org/wiki/File:Device_passthrough_xen.pdf
http://wiki.xenproject.org/wiki/File:Device_passthrough_xen.pdf
http://wiki.xenproject.org/wiki/File:Device_passthrough_xen.pdf
http://wiki.xenproject.org/wiki/File:Device_passthrough_xen.pdf
http://wiki.xenproject.org/wiki/File:Device_passthrough_xen.pdf
http://wiki.xenproject.org/wiki/File:Device_passthrough_xen.pdf
http://wiki.xenproject.org/wiki/File:Device_passthrough_xen.pdf
http://wiki.xenproject.org/wiki/File:Device_passthrough_xen.pdf
http://wiki.xenproject.org/wiki/File:Device_passthrough_xen.pdf
http://wiki.xenproject.org/wiki/File:Device_passthrough_xen.pdf
http://wiki.xenproject.org/wiki/File:Device_passthrough_xen.pdf
https://blog.xenproject.org/2013/08/14/swiotlb-by-morpheus
https://blog.xenproject.org/2013/08/14/swiotlb-by-morpheus
https://blog.xenproject.org/2013/08/14/swiotlb-by-morpheus
https://blog.xenproject.org/2013/08/14/swiotlb-by-morpheus
https://blog.xenproject.org/2013/08/14/swiotlb-by-morpheus
https://blog.xenproject.org/2013/08/14/swiotlb-by-morpheus
https://blog.xenproject.org/2013/08/14/swiotlb-by-morpheus
https://blog.xenproject.org/2013/08/14/swiotlb-by-morpheus
https://blog.xenproject.org/2013/08/14/swiotlb-by-morpheus
https://blog.xenproject.org/2013/08/14/swiotlb-by-morpheus
https://blog.xenproject.org/2013/08/14/swiotlb-by-morpheus
https://blog.xenproject.org/2013/08/14/swiotlb-by-morpheus
https://blog.xenproject.org/2013/08/14/swiotlb-by-morpheus

● Adjust xenpolicy. A driver domain is different from a trusted domain 0 and a guest
domain U, so it is a good idea to create a standalone security label for it and
assign proper security rights. For example, a driver domain must have access to
real hardware, so corresponding rules which allows access to iomem and irqs
have to be added.

+admin_device(domd_t, device_t)

+admin_device(domd_t, irq_t)

+admin_device(domd_t, ioport_t)

+admin_device(domd_t, iomem_t)

● Adjust hypervisor. Added changes are necessary to map a driver domain

physical memory 1:1 to a machine memory and IRQ passthrough.

● Adjust xentools. Changes are minimal here. The possibility of allocation 512Mb /
256Mb / 128 Mb in one chunk of memory was added. This is also needed to map
memory 1:1.

● Configure driver domain’s kernel. Typically, this step consists of a proper kernel

configuration and turning-on of hardware drivers, which will be used in a current
driver domain.

● Prepare the device tree. Device tree for a driver domain is still attached to kernel

due to unresolved passthrough issues, which were described in the following
article: http://wiki.xenproject.org/wiki/File:Device_passthrough_xen.pdf. Having
analyzed all the possible solutions we decided to keep the driver domain device
tree blob attached to kernel. In general, this is not the best solution. One of the
proper solutions is to have only one device tree for a trusted domain 0, and
control logic in xentools, which copies “passthrough” nodes as is to a driver
domain on the fly during its creation.

● Bring up PV drivers’ backends. As soon as the driver domain controls hardware,

PV backends migrate here. On Nautilus we have PV audio, PV framebuffer, PV
event device, and PV USB backends, which we moved from a domain 0 to a
driver domain.

After these steps are completed, the driver domain is ready to run.

Hardware distribution conflicts between driver domains

Resolution of such conflicts is one of the steps of a driver domain bring-up. I decided to
describe it in separate chapter because it is the most risky one. Depending on the
requirements you may succeed in hardware distribution or not. For example, a
hardware audio driver is needed in one driver domain and a hardware video camera
has to be operating in another driver domain. And now imagine that they both use the

http://wiki.xenproject.org/wiki/File:Device_passthrough_xen.pdf
http://wiki.xenproject.org/wiki/File:Device_passthrough_xen.pdf
http://wiki.xenproject.org/wiki/File:Device_passthrough_xen.pdf
http://wiki.xenproject.org/wiki/File:Device_passthrough_xen.pdf
http://wiki.xenproject.org/wiki/File:Device_passthrough_xen.pdf
http://wiki.xenproject.org/wiki/File:Device_passthrough_xen.pdf
http://wiki.xenproject.org/wiki/File:Device_passthrough_xen.pdf
http://wiki.xenproject.org/wiki/File:Device_passthrough_xen.pdf
http://wiki.xenproject.org/wiki/File:Device_passthrough_xen.pdf
http://wiki.xenproject.org/wiki/File:Device_passthrough_xen.pdf
http://wiki.xenproject.org/wiki/File:Device_passthrough_xen.pdf
http://wiki.xenproject.org/wiki/File:Device_passthrough_xen.pdf
http://wiki.xenproject.org/wiki/File:Device_passthrough_xen.pdf
http://wiki.xenproject.org/wiki/File:Device_passthrough_xen.pdf
http://wiki.xenproject.org/wiki/File:Device_passthrough_xen.pdf
http://wiki.xenproject.org/wiki/File:Device_passthrough_xen.pdf
http://wiki.xenproject.org/wiki/File:Device_passthrough_xen.pdf
http://wiki.xenproject.org/wiki/File:Device_passthrough_xen.pdf
http://wiki.xenproject.org/wiki/File:Device_passthrough_xen.pdf

same I2C controller or DMA controller. Thus, it is needed to share the same I2C / DMA
cores between domains. But how can it be done without a lot of ugly tricks in I2C / DMA
driver?

Figure 1. Conflict in IP cores distribution

Looking deeply, you may be lucky on the IP cores level, namely your audio and camera
may use different I2Cs, different DMAs, different GPIOs, but still they may use the same
clock oscillator and the same voltage controller. And in case one driver touches them,
you cannot even predict the behavior of another driver domain. This is the most risky
issue, as it leads to a completely unpredictable behaviour and impacts the whole
system’s stability.

Here are some real-life examples:

● I2C IP crashes unpredictably if its parent clock oscillator is scaled to an initial
value by a clock framework of another driver domain.

● DMA controller returns unpredictable errors in case its parent clock oscillator is

scaled to an initial value by a clock framework of another driver domain.

● Things are even worse if one of the driver domains uses aggressive power
management. In this case, if IP Core turns idle its parent clock oscillator turns off

in one driver domain, and at the same time another driver domain fails during
access to a disabled hardware, because the same clock is a parent of another IP
core, which belongs explicitly to this domain.

Figure 2. Conflict in hidden distribution of IP cores

The possible solutions are as follows:

- Do not touch shared HW resources in several domains. This is true for such
examples as one clock and one voltage controller for several IPs. For example,
these resources may be configured once they are in a bootloader, or once they
are in a driver domain, whichever starts first. This solution requires a deep low
level understanding of resources communication inside a specified platform, as it
is hard to say which resource cannot be touched in a specified domain.

- Distribute everything, including clocks and voltage domains. This will be

described in details in the following chapter.

Complete hardware distribution in virtualized environment

We are lucky with our Nautilus system. Having a deep understanding of the platform’s
low level internals we succeed to distribute IP cores without serious conflicts. In this
chapter I want to describe how to get rid of such conflicts completely. The idea is quite

simple: you need to redesign the connection of hardware elements taking into account
their distribution between domains. A part of this job can be done with existing
hardware. For example, some clock oscillators allow reconnection to different parents.
With this technique it is possible to minimize the impact of hardware sharing. But the
best idea is a complete HW distribution during platform hardware’s design. This can be
done if a platform is designed for a specialized market (automotive, in our case) with a
view that a platform will work under virtualization.

Figure 3. Complete hardware distribution between driver domains

In this case the following conditions should be met (the list is non-exhaustive):

- There should be as many external clock oscillators as there are domains in your
system. Note that system clocks are roots of other clocks of a platform. All
domains should be counted, not only driver domains.

- There should be as many I2C buses (or any other control buses) as there are

domains in your system and they must be powered by clocks inherited from an
explicit domain system clock.

- There should be as many GPIO controllers as there are domains in your system,

with the same requirements as for I2C buses.

- There should be as many DMA controllers as there are domains in your system,
with the same requirements as for I2C buses.

- In case of power management usage, voltage regulators must be taken into

account. One driver domain may use several voltage regulators, but they must
be specifically allocated for it. No other domain should access them.

Of course, this is an ideal situation. So far, I am not familiar with ARM-based platforms
which follow these requirements. I hope that the next generation of well-known
automotive vendors will follow this principles. This won't seriously impact the platform’s
price, and the one who implements it will definitely be a market winner.

Driver domain crash and reboot

Finally, the main advantage of a driver domain is that it can crash and system will
remain alive. On Nautilus platform we guarantee that even if a driver domain (or any
other domain) crashes, the system will stay alive together with all critical automotive
stuff. You only need needed to restart it and reconnect PV backends with corresponding
PV frontends. For example, if a driver domain crashes for some reason while audio is
playing under Android, for an end user it will look just like a pause in audio playback.
The pause will take long as it is needed for kernel + PV audio backend restart.

And what about domain 0?

Yet, after all hardware migrated to a driver domain, domain 0 become “thin”. Its kernel,
together with a device tree is almost empty and contains only SATA driver. The only PV
backend which is still running in domain 0 is a PV block-device. As I have mentioned
before, for us it means stability improvement. Domain 0 does nothing, except
hypervisor-related stuff: domains’ creation and management. The only hardware whose
stability must be guaranteed is SATA, but it is much easier to guarantee SATA’s stability
only than a stability of whole hardware platform.

Conclusion

In this article I have briefly described the experience of bringing up a driver domain on
an ARM-based platform. I need to say that it is quite easy to do it under a Xen-powered
environment, which provides a possibility to introduce such features easily along with a
great community support. And it seems to be one of the first driver domains running
successfully on an ARM-based platform. At least I haven't found any information that
someone does similar work on ARM.

