Interface manual
Xen v2.0 for x86

Xen is Copyright (c) 2002-2004, The Xen Team
University of Cambridge, UK

DISCLAIMER: This documentation is currently under active development and
as such there may be mistakes and omissions — watch out for these and please
report any you find to the developer’s mailing list. Contributions of material,
suggestions and corrections are welcome.

Contents

1 Introduction 1
2 Virtual Architecture 3
2.1 CPUstate oot 3
2.2 BXCeptions e e e e e e 3

2.3 Interruptsandevents 4
24 Time e 4

2.5 XenCPU Scheduling 5

2.6 Privilegedoperations L o 5

3 Memory 7
3.1 Memory Allocation 7

3.2 Pseudo-Physical Memory 7

33 PageTableUpdates 8

3.4 Segment Descriptor Tables 9

3.5 StartofDay 9

4 Devices 11
4.1 Networkl/O 11
4.1.1 Backend Packet Handling 12

412 DataTransfer 12

42 Blockl/O e 13
421 DataTransfer 13

5 Further Information 15
5.1 Other documentation 15

5.2 Onlinereferences i e 15

5.3 Mailinglists 15

A Xen Hypercalls 17
A.1 InvokingHypercalls. 17
A2 Virtual CPUSetup 18

A3 Schedulingand Timer 18
A4 Page Table Management 19
A5 Segmentation Support. 20
A.6 Context Switching, 21
A.7 Physical Memory Management 22
A.8 Inter-Domain Communication 22
A9 PCIConfiguration 23
A.10 Administrative Operations 23
A.11 Debugging Hypercalls 25
A.12 Deprecated Hypercalls 25

ii

Chapter 1

Introduction

Xen allows the hardware resources of a machine to be virtualized and dynamically
partitioned, allowing multiple different guest operating system images to be run si-
multaneously. Virtualizing the machine in this manner provides considerable flexibil-
ity, for example allowing different users to choose their preferred operating system
(e.g., Linux, NetBSD, or a custom operating system). Furthermore, Xen provides se-
cure partitioning between virtual machines (known as domains in Xen terminology),
and enables better resource accounting and QoS isolation than can be achieved with a
conventional operating system.

Xen essentially takes a ‘whole machine’ virtualization approach as pioneered by IBM
VM/370. However, unlike VM/370 or more recent efforts such as VMWare and Virtual
PC, Xen does not attempt to completely virtualize the underlying hardware. Instead
parts of the hosted guest operating systems are modified to work with the VMM; the
operating system is effectively ported to a new target architecture, typically requiring
changes in just the machine-dependent code. The user-level API is unchanged, and so
existing binaries and operating system distributions work without modification.

In addition to exporting virtualized instances of CPU, memory, network and block
devices, Xen exposes a control interface to manage how these resources are shared
between the running domains. Access to the control interface is restricted: it may
only be used by one specially-privileged VM, known as domain 0. This domain is a
required part of any Xen-based server and runs the application software that manages
the control-plane aspects of the platform. Running the control software in domain 0,
distinct from the hypervisor itself, allows the Xen framework to separate the notions
of mechanism and policy within the system.

Chapter 2

Virtual Architecture

On a Xen-based system, the hypervisor itself runs in ring 0. It has full access to the
physical memory available in the system and is responsible for allocating portions of
it to the domains. Guest operating systems run in and use rings 1, 2 and 3 as they see
fit. Segmentation is used to prevent the guest OS from accessing the portion of the
address space that is reserved for Xen. We expect most guest operating systems will
use ring 1 for their own operation and place applications in ring 3.

In this chapter we consider the basic virtual architecture provided by Xen: the basic
CPU state, exception and interrupt handling, and time. Other aspects such as memory
and device access are discussed in later chapters.

2.1 CPU state

All privileged state must be handled by Xen. The guest OS has no direct access to CR3
and is not permitted to update privileged bits in EFLAGS. Guest OSes use hypercalls
to invoke operations in Xen; these are analogous to system calls but occur from ring 1
to ring 0.

A list of all hypercalls is given in Appendix A.

2.2 Exceptions

A virtual IDT is provided — a domain can submit a table of trap handlers to Xen via
the set_trap_table () hypercall. Most trap handlers are identical to native x86
handlers, although the page-fault handler is somewhat different.

2.3 Interrupts and events

Interrupts are virtualized by mapping them to events, which are delivered asynchronously
to the target domain using a callback supplied via the set _callbacks () hypercall.
A guest OS can map these events onto its standard interrupt dispatch mechanisms. Xen
is responsible for determining the target domain that will handle each physical inter-
rupt source. For more details on the binding of event sources to events, see Chapter 4.

2.4 Time

Guest operating systems need to be aware of the passage of both real (or wallclock)
time and their own ‘virtual time’ (the time for which they have been executing). Fur-
thermore, Xen has a notion of time which is used for scheduling. The following notions
of time are provided:

Cycle counter time. This provides a fine-grained time reference. The cycle counter
time is used to accurately extrapolate the other time references. On SMP ma-
chines it is currently assumed that the cycle counter time is synchronized be-
tween CPUs. The current x86-based implementation achieves this within inter-
CPU communication latencies.

System time. This is a 64-bit counter which holds the number of nanoseconds that
have elapsed since system boot.

Wall clock time. This is the time of day in a Unix-style struct timeval (seconds
and microseconds since 1 January 1970, adjusted by leap seconds). An NTP
client hosted by domain 0 can keep this value accurate.

Domain virtual time. This progresses at the same pace as system time, but only while
a domain is executing — it stops while a domain is de-scheduled. Therefore the
share of the CPU that a domain receives is indicated by the rate at which its
virtual time increases.

Xen exports timestamps for system time and wall-clock time to guest operating sys-
tems through a shared page of memory. Xen also provides the cycle counter time at the
instant the timestamps were calculated, and the CPU frequency in Hertz. This allows
the guest to extrapolate system and wall-clock times accurately based on the current
cycle counter time.

Since all time stamps need to be updated and read atomically two version numbers
are also stored in the shared info page. The first is incremented prior to an update,
while the second is only incremented afterwards. Thus a guest can be sure that it read
a consistent state by checking the two version numbers are equal.

Xen includes a periodic ticker which sends a timer event to the currently executing
domain every 10ms. The Xen scheduler also sends a timer event whenever a domain

is scheduled; this allows the guest OS to adjust for the time that has passed while it
has been inactive. In addition, Xen allows each domain to request that they receive a
timer event sent at a specified system time by using the set_timer _op() hypercall.
Guest OSes may use this timer to implement timeout values when they block.

2.5 Xen CPU Scheduling

Xen offers a uniform API for CPU schedulers. It is possible to choose from a number
of schedulers at boot and it should be easy to add more. The BVT, Atropos and Round
Robin schedulers are part of the normal Xen distribution. BVT provides proportional
fair shares of the CPU to the running domains. Atropos can be used to reserve absolute
shares of the CPU for each domain. Round-robin is provided as an example of Xen’s
internal scheduler API.

Note: SMP host support Xen has always supported SMP host systems. Domains
are statically assigned to CPUs, either at creation time or when manually pinning to a
particular CPU. The current schedulers then run locally on each CPU to decide which
of the assigned domains should be run there. The user-level control software can be
used to perform coarse-grain load-balancing between CPUs.

2.6 Privileged operations

Xen exports an extended interface to privileged domains (viz. Domain 0). This allows
such domains to build and boot other domains on the server, and provides control
interfaces for managing scheduling, memory, networking, and block devices.

Chapter 3

Memory

Xen is responsible for managing the allocation of physical memory to domains, and
for ensuring safe use of the paging and segmentation hardware.

3.1 Memory Allocation

Xen resides within a small fixed portion of physical memory; it also reserves the top
64MB of every virtual address space. The remaining physical memory is available for
allocation to domains at a page granularity. Xen tracks the ownership and use of each
page, which allows it to enforce secure partitioning between domains.

Each domain has a maximum and current physical memory allocation. A guest OS
may run a ‘balloon driver’ to dynamically adjust its current memory allocation up to
its limit.

3.2 Pseudo-Physical Memory

Since physical memory is allocated and freed on a page granularity, there is no guaran-
tee that a domain will receive a contiguous stretch of physical memory. However most
operating systems do not have good support for operating in a fragmented physical
address space. To aid porting such operating systems to run on top of Xen, we make a
distinction between machine memory and pseudo-physical memory.

Put simply, machine memory refers to the entire amount of memory installed in the
machine, including that reserved by Xen, in use by various domains, or currently
unallocated. We consider machine memory to comprise a set of 4K machine page
frames numbered consecutively starting from 0. Machine frame numbers mean the
same within Xen or any domain.

Pseudo-physical memory, on the other hand, is a per-domain abstraction. It allows a

guest operating system to consider its memory allocation to consist of a contiguous
range of physical page frames starting at physical frame 0, despite the fact that the
underlying machine page frames may be sparsely allocated and in any order.

To achieve this, Xen maintains a globally readable machine-to-physical table which
records the mapping from machine page frames to pseudo-physical ones. In addition,
each domain is supplied with a physical-to-machine table which performs the inverse
mapping. Clearly the machine-to-physical table has size proportional to the amount of
RAM installed in the machine, while each physical-to-machine table has size propor-
tional to the memory allocation of the given domain.

Architecture dependent code in guest operating systems can then use the two tables to
provide the abstraction of pseudo-physical memory. In general, only certain special-
ized parts of the operating system (such as page table management) needs to under-
stand the difference between machine and pseudo-physical addresses.

3.3 Page Table Updates

In the default mode of operation, Xen enforces read-only access to page tables and
requires guest operating systems to explicitly request any modifications. Xen validates
all such requests and only applies updates that it deems safe. This is necessary to
prevent domains from adding arbitrary mappings to their page tables.

To aid validation, Xen associates a type and reference count with each memory page.
A page has one of the following mutually-exclusive types at any point in time: page
directory (PD), page table (PT), local descriptor table (LDT), global descriptor table
(GDT), or writable (RW). Note that a guest OS may always create readable mappings
of its own memory regardless of its current type. This mechanism is used to main-
tain the invariants required for safety; for example, a domain cannot have a writable
mapping to any part of a page table as this would require the page concerned to simul-
taneously be of types PT and RW.

Xen also provides an alternative mode of operation in which guests be have the illusion
that their page tables are directly writable. Of course this is not really the case, since
Xen must still validate modifications to ensure secure partitioning. To this end, Xen
traps any write attempt to a memory page of type PT (i.e., that is currently part of a
page table). If such an access occurs, Xen temporarily allows write access to that page
while at the same time disconnecting it from the page table that is currently in use.
This allows the guest to safely make updates to the page because the newly-updated
entries cannot be used by the MMU until Xen revalidates and reconnects the page.
Reconnection occurs automatically in a number of situations: for example, when the
guest modifies a different page-table page, when the domain is preempted, or whenever
the guest uses Xen’s explicit page-table update interfaces.

Finally, Xen also supports a form of shadow page tables in which the guest OS uses

a independent copy of page tables which are unknown to the hardware (i.e. which are
never pointed to by cr3). Instead Xen propagates changes made to the guest’s tables
to the real ones, and vice versa. This is useful for logging page writes (e.g. for live
migration or checkpoint). A full version of the shadow page tables also allows guest
OS porting with less effort.

3.4 Segment Descriptor Tables

On boot a guest is supplied with a default GDT, which does not reside within its own
memory allocation. If the guest wishes to use other than the default ‘flat’ ring-1 and
ring-3 segments that this GDT provides, it must register a custom GDT and/or LDT
with Xen, allocated from its own memory. Note that a number of GDT entries are
reserved by Xen — any custom GDT must also include sufficient space for these entries.

For example, the following hypercall is used to specify a new GDT:
int set_gdt(unsigned long *frame_list, int entries)

frame _list: An array of up to 16 machine page frames within which the
GDT resides. Any frame registered as a GDT frame may only be mapped
read-only within the guest’s address space (e.g., no writable mappings, no
use as a page-table page, and so on).

entries: The number of descriptor-entry slots in the GDT. Note that the ta-
ble must be large enough to contain Xen’s reserved entries; thus we must
have ‘entries > LAST_RESERVED _GDT_ENTRY ’. Note also that, after
registering the GDT, slots FIRST _through LAST_RESERVED _GDT_ENTRY
are no longer usable by the guest and may be overwritten by Xen.

The LDT is updated via the generic MMU update mechanism (i.e., via the mmu_update ()
hypercall.

3.5 Start of Day

The start-of-day environment for guest operating systems is rather different to that
provided by the underlying hardware. In particular, the processor is already executing
in protected mode with paging enabled.

Domain 0 is created and booted by Xen itself. For all subsequent domains, the ana-
logue of the boot-loader is the domain builder, user-space software running in domain
0. The domain builder is responsible for building the initial page tables for a domain
and loading its kernel image at the appropriate virtual address.

10

Chapter 4

Devices

Devices such as network and disk are exported to guests using a split device driver.
The device driver domain, which accesses the physical device directly also runs a
backend driver, serving requests to that device from guests. Each guest will use a sim-
ple frontend driver, to access the backend. Communication between these domains is
composed of two parts: First, data is placed onto a shared memory page between the
domains. Second, an event channel between the two domains is used to pass notifica-
tion that data is outstanding. This separation of notification from data transfer allows
message batching, and results in very efficient device access.

Event channels are used extensively in device virtualization; each domain has a number
of end-points or ports each of which may be bound to one of the following event
sources:

e a physical interrupt from a real device,
e a virtual interrupt (callback) from Xen, or
e a signal from another domain

Events are lightweight and do not carry much information beyond the source of the
notification. Hence when performing bulk data transfer, events are typically used as
synchronization primitives over a shared memory transport. Event channels are man-
aged via the event_channel op() hypercall; for more details see Section A.8.

This chapter focuses on some individual device interfaces available to Xen guests.

4.1 Network I/0

Virtual network device services are provided by shared memory communication with
a backend domain. From the point of view of other domains, the backend may be
viewed as a virtual ethernet switch element with each domain having one or more
virtual network interfaces connected to it.

11

4.1.1 Backend Packet Handling

The backend driver is responsible for a variety of actions relating to the transmission
and reception of packets from the physical device. With regard to transmission, the
backend performs these key actions:

e Validation: To ensure that domains do not attempt to generate invalid (e.g.
spoofed) traffic, the backend driver may validate headers ensuring that source
MAC and IP addresses match the interface that they have been sent from.

Validation functions can be configured using standard firewall rules (iptables
in the case of Linux).

e Scheduling: Since a number of domains can share a single physical network
interface, the backend must mediate access when several domains each have
packets queued for transmission. This general scheduling function subsumes
basic shaping or rate-limiting schemes.

e Logging and Accounting: The backend domain can be configured with clas-
sifier rules that control how packets are accounted or logged. For example, log
messages might be generated whenever a domain attempts to send a TCP packet
containing a SYN.

On receipt of incoming packets, the backend acts as a simple demultiplexer: Packets
are passed to the appropriate virtual interface after any necessary logging and account-
ing have been carried out.

4.1.2 Data Transfer

Each virtual interface uses two “descriptor rings”, one for transmit, the other for re-
ceive. Each descriptor identifies a block of contiguous physical memory allocated to
the domain.

The transmit ring carries packets to transmit from the guest to the backend domain.
The return path of the transmit ring carries messages indicating that the contents have
been physically transmitted and the backend no longer requires the associated pages
of memory.

To receive packets, the guest places descriptors of unused pages on the receive ring.
The backend will return received packets by exchanging these pages in the domain’s
memory with new pages containing the received data, and passing back descriptors
regarding the new packets on the ring. This zero-copy approach allows the backend to
maintain a pool of free pages to receive packets into, and then deliver them to appro-
priate domains after examining their headers.

If a domain does not keep its receive ring stocked with empty buffers then packets
destined to it may be dropped. This provides some defence against receive livelock
problems because an overload domain will cease to receive further data. Similarly, on

12

the transmit path, it provides the application with feedback on the rate at which packets
are able to leave the system.

Flow control on rings is achieved by including a pair of producer indexes on the shared
ring page. Each side will maintain a private consumer index indicating the next out-
standing message. In this manner, the domains cooperate to divide the ring into two
message lists, one in each direction. Notification is decoupled from the immediate
placement of new messages on the ring; the event channel will be used to generate
notification when either a certain number of outstanding messages are queued, or a
specified number of nanoseconds have elapsed since the oldest message was placed on
the ring.

4.2 Block I/0

All guest OS disk access goes through the virtual block device VBD interface. This
interface allows domains access to portions of block storage devices visible to the the
block backend device. The VBD interface is a split driver, similar to the network
interface described above. A single shared memory ring is used between the frontend
and backend drivers, across which read and write messages are sent.

Any block device accessible to the backend domain, including network-based block
(iSCSI, *NBD, etc), loopback and LVM/MD devices, can be exported as a VBD. Each
VBD is mapped to a device node in the guest, specified in the guest’s startup configu-
ration.

Old (Xen 1.2) virtual disks are not supported under Xen 2.0, since similar functionality
can be achieved using the more complete LVM system, which is already in widespread
use.

4.2.1 Data Transfer

The single ring between the guest and the block backend supports three messages:

PROBE: Return a list of the VBDs available to this guest from the backend. The re-
quest includes a descriptor of a free page into which the reply will be written by
the backend.

READ: Read data from the specified block device. The front end identifies the device
and location to read from and attaches pages for the data to be copied to (typ-
ically via DMA from the device). The backend acknowledges completed read
requests as they finish.

WRITE: Write data to the specified block device. This functions essentially as READ,
except that the data moves to the device instead of from it.

13

14

Chapter 5

Further Information

If you have questions that are not answered by this manual, the sources of informa-
tion listed below may be of interest to you. Note that bug reports, suggestions and
contributions related to the software (or the documentation) should be sent to the Xen
developers’ mailing list (address below).

5.1 Other documentation

If you are mainly interested in using (rather than developing for) Xen, the Xen Users’
Manual is distributed in the docs/ directory of the Xen source distribution.

5.2 Online references

The official Xen web site is found at:
http://www.cl.cam.ac.uk/Research/SRG/netos/xen/

This contains links to the latest versions of all on-line documentation.

5.3 Mailing lists

There are currently four official Xen mailing lists:

xen-devel @lists.xensource.com Used for development discussions and bug reports.
Subscribe at:

http://lists.xensource.com/xen-devel

xen-users @lists.xensource.com Used for installation and usage discussions and re-
quests for help. Subscribe at:

http://lists.xensource.com/xen-users

15

xen-announce @lists.xensource.com Used for announcements only. Subscribe at:

http://lists.xensource.com/xen—announce

xen-changelog @lists.xensource.com Changelog feed from the unstable and 2.0 trees
- developer oriented. Subscribe at:

http://lists.xensource.com/xen—-changelog

Of these, xen-devel is the most active.

16

Appendix A

Xen Hypercalls

Hypercalls represent the procedural interface to Xen; this appendix categorizes and
describes the current set of hypercalls.

A.1 Invoking Hypercalls

Hypercalls are invoked in a manner analogous to system calls in a conventional oper-
ating system; a software interrupt is issued which vectors to an entry point within Xen.
On x86_32 machines the instruction required is int $82; the (real) IDT is setup so
that this may only be issued from within ring 1. The particular hypercall to be invoked
is contained in EAX — a list mapping these values to symbolic hypercall names can be
found in xen/include/public/xen.h.

On some occasions a set of hypercalls will be required to carry out a higher-level
function; a good example is when a guest operating wishes to context switch to a new
process which requires updating various privileged CPU state. As an optimization for
these cases, there is a generic mechanism to issue a set of hypercalls as a batch:

multicall(void *call_list, int nr_calls)

Execute a series of hypervisor calls; nr_calls is the length of the array
of multicall entry_t structures pointed to be call _list. Each
entry contains the hypercall operation code followed by up to 7 word-
sized arguments.

Note that multicalls are provided purely as an optimization; there is no requirement to
use them when first porting a guest operating system.

17

A.2 Virtual CPU Setup

At start of day, a guest operating system needs to setup the virtual CPU it is executing
on. This includes installing vectors for the virtual IDT so that the guest OS can handle
interrupts, page faults, etc. However the very first thing a guest OS must setup is a pair
of hypervisor callbacks: these are the entry points which Xen will use when it wishes
to notify the guest OS of an occurrence.

set_callbacks(unsigned long event_selector, unsigned long event_address,
unsigned long failsafe_selector, unsigned long failsafe_address)

Register the normal (“event”) and failsafe callbacks for event processing.
In each case the code segment selector and address within that segment are
provided. The selectors must have RPL 1; in XenLinux we simply use the
kernel’s CS for both event_selector and failsafe_selector.

The value event_address specifies the address of the guest OSes event
handling and dispatch routine; the failsafe_address specifies a sep-
arate entry point which is used only if a fault occurs when Xen attempts
to use the normal callback.

After installing the hypervisor callbacks, the guest OS can install a ‘virtual IDT”* by
using the following hypercall:

set_trap_table(trap_info_t *table)

Install one or more entries into the per-domain trap handler table (essen-
tially a software version of the IDT). Each entry in the array pointed to by
table includes the exception vector number with the corresponding seg-
ment selector and entry point. Most guest OSes can use the same handlers
on Xen as when running on the real hardware; an exception is the page
fault handler (exception vector 14) where a modified stack-frame layout
is used.

A.3 Scheduling and Timer

Domains are preemptively scheduled by Xen according to the parameters installed by
domain 0 (see Section A.10). In addition, however, a domain may choose to explicitly
control certain behavior with the following hypercall:

sched_op(unsigned long op)

Request scheduling operation from hypervisor. The options are: yield,
block, and shutdown. yield keeps the calling domain runnable but may
cause a reschedule if other domains are runnable. block removes the call-
ing domain from the run queue and cause is to sleeps until an event is

18

delivered to it. shutdown is used to end the domain’s execution; the caller
can additionally specify whether the domain should reboot, halt or sus-
pend.

To aid the implementation of a process scheduler within a guest OS, Xen provides a
virtual programmable timer:

set_timer_op(uint64_t timeout)

Request a timer event to be sent at the specified system time (time in
nanoseconds since system boot). The hypercall actually passes the 64-bit
timeout value as a pair of 32-bit values.

Note that calling set_timer_op() prior to sched_op allows block-with-timeout
semantics.

A.4 Page Table Management

Since guest operating systems have read-only access to their page tables, Xen must
be involved when making any changes. The following multi-purpose hypercall can
be used to modify page-table entries, update the machine-to-physical mapping table,
flush the TLB, install a new page-table base pointer, and more.

mmu_update(mmu_update_t *req, int count, int *success_count)

Update the page table for the domain; a set of count updates are sub-
mitted for processing in a batch, with success_count being updated
to report the number of successful updates.

Each element of reqg[] contains a pointer (address) and value; the least
significant 2-bits of the pointer are used to distinguish the type of update
requested as follows:

MMU _NORMAL _PT_UPDATE: update a page directory entry or page ta-
ble entry to the associated value; Xen will check that the update is
safe, as described in Chapter 3.

MMU _MACHPHYS _UPDATE: update an entry in the machine-to-physical
table. The calling domain must own the machine page in question
(or be privileged).

MMU_EXTENDED_COMMAND: perform additional MMU operations.
The set of additional MMU operations is considerable, and includes
updating cr3 (or just re-installing it for a TLB flush), flushing the
cache, installing a new LDT, or pinning & unpinning page-table
pages (to ensure their reference count doesn’t drop to zero which
would require a revalidation of all entries).

19

Further extended commands are used to deal with granting and ac-
quiring page ownership; see Section A.8.

More details on the precise format of all commands can be found in
xen/include/public/xen.h.

Explicitly updating batches of page table entries is extremely efficient, but can require
anumber of alterations to the guest OS. Using the writable page table mode (Chapter 3)
is recommended for new OS ports.

Regardless of which page table update mode is being used, however, there are some
occasions (notably handling a demand page fault) where a guest OS will wish to mod-
ify exactly one PTE rather than a batch. This is catered for by the following:

update_va_mapping(unsigned long page_nr, unsigned long val,
unsigned long flags)

Update the currently installed PTE for the page page nr to val. As with
mmu_update (), Xen checks the modification is safe before applying it.
The £1lags determine which kind of TLB flush, if any, should follow the
update.

Finally, sufficiently privileged domains may occasionally wish to manipulate the pages
of others:

update_va_mapping_otherdomain(unsigned long page_nr, unsigned
long val, unsigned long flags, uint16_t domid)

Identical to update va mapping () save that the pages being mapped
must belong to the domain domid.

This privileged operation is currently used by backend virtual device drivers to safely
map pages containing I/O data.

A.5 Segmentation Support

Xen allows guest OSes to install a custom GDT if they require it; this is context
switched transparently whenever a domain is [de]scheduled. The following hypercall
is effectively a ‘safe’ version of 1gdt:

set_gdt(unsigned long *frame _list, int entries)

Install a global descriptor table for a domain; frame_list is an array
of up to 16 machine page frames within which the GDT resides, with
entries being the actual number of descriptor-entry slots. All page
frames must be mapped read-only within the guest’s address space, and
the table must be large enough to contain Xen’s reserved entries (see
xen/include/public/arch-x86_32.h).

20

Many guest OSes will also wish to install LDTs; this is achieved by using mmu_update ()
with an extended command, passing the linear address of the LDT base along with the
number of entries. No special safety checks are required; Xen needs to perform this
task simply since 11dt requires CPL 0.

Xen also allows guest operating systems to update just an individual segment descrip-
tor in the GDT or LDT:

update_descriptor(unsigned long ma, unsigned long word1, unsigned
long word?2)

Update the GDT/LDT entry at machine address ma; the new 8-byte de-
scriptor is stored in wordl and word2. Xen performs a number of
checks to ensure the descriptor is valid.

Guest OSes can use the above in place of context switching entire LDTs (or the GDT)
when the number of changing descriptors is small.

A.6 Context Switching

When a guest OS wishes to context switch between two processes, it can use the page
table and segmentation hypercalls described above to perform the the bulk of the priv-
ileged work. In addition, however, it will need to invoke Xen to switch the kernel (ring
1) stack pointer:

stack_switch(unsigned long ss, unsigned long esp)

Request kernel stack switch from hypervisor; ss is the new stack seg-
ment, which esp is the new stack pointer.

A final useful hypercall for context switching allows “lazy” save and restore of floating
point state:
fpu_taskswitch(void)

This call instructs Xen to set the TS bit in the cr 0 control register; this
means that the next attempt to use floating point will cause a trap which
the guest OS can trap. Typically it will then save/restore the FP state, and
clear the TS bit.

This is provided as an optimization only; guest OSes can also choose to save and
restore FP state on all context switches for simplicity.

21

A.7 Physical Memory Management

As mentioned previously, each domain has a maximum and current memory allocation.
The maximum allocation, set at domain creation time, cannot be modified. However
a domain can choose to reduce and subsequently grow its current allocation by using
the following call:

dom_mem_op(unsigned int op, unsigned long *extent_list, unsigned
long nr_extents, unsigned int extent_order)

Increase or decrease current memory allocation (as determined by the
value of op). Each invocation provides a list of extents each of which
is 2% pages in size, where s is the value of extent order.

In addition to simply reducing or increasing the current memory allocation via a ‘bal-
loon driver’, this call is also useful for obtaining contiguous regions of machine mem-
ory when required (e.g. for certain PCI devices, or if using superpages).

A.8 Inter-Domain Communication

Xen provides a simple asynchronous notification mechanism via event channels. Each
domain has a set of end-points (or ports) which may be bound to an event source (e.g.
a physical IRQ, a virtual IRQ, or an port in another domain). When a pair of end-points
in two different domains are bound together, then a ‘send’ operation on one will cause
an event to be received by the destination domain.

The control and use of event channels involves the following hypercall:

event_channel_op(evtchn_op_t *op)

Inter-domain event-channel management; op is a discriminated union
which allows the following 7 operations:

alloc_unbound: allocate a free (unbound) local port and prepare for con-
nection from a specified domain.

bind_virg: bind a local port to a virtual IRQ; any particular VIRQ can be
bound to at most one port per domain.

bind_pirg: bind a local port to a physical IRQ; once more, a given pIRQ
can be bound to at most one port per domain. Furthermore the call-
ing domain must be sufficiently privileged.

bind_interdomain: construct an interdomain event channel; in general,
the target domain must have previously allocated an unbound port
for this channel, although this can be bypassed by privileged do-
mains during domain setup.

22

close: close an interdomain event channel.

send: send an event to the remote end of a interdomain event channel.
status: determine the current status of a local port.

For more details see xen/include/public/event_channel.h.

Event channels are the fundamental communication primitive between Xen domains
and seamlessly support SMP. However they provide little bandwidth for communica-
tion per se, and hence are typically married with a piece of shared memory to produce
effective and high-performance inter-domain communication.

Safe sharing of memory pages between guest OSes is carried out by granting access on
a per page basis to individual domains. This is achieved by using the grant _table_op()
hypercall.

grant_table_op(unsigned int cmd, void *uop, unsigned int count)

Grant or remove access to a particular page to a particular domain.

This is not currently widely in use by guest operating systems, but we intend to inte-
grate support more fully in the near future.

A.9 PCI Configuration

Domains with physical device access (i.e. driver domains) receive limited access to
certain PCI devices (bus address space and interrupts). However many guest operating
systems attempt to determine the PCI configuration by directly access the PCI BIOS,
which cannot be allowed for safety.

Instead, Xen provides the following hypercall:

physdev_op(void *physdev_op)

Perform a PCI configuration option; depending on the value of phys—
dev_op this can be a PCI config read, a PCI config write, or a small
number of other queries.

For examples of using physdev_op (), see the Xen-specific PCI code in the linux
sparse tree.

A.10 Administrative Operations

A large number of control operations are available to a sufficiently privileged domain
(typically domain 0). These allow the creation and management of new domains, for
example. A complete list is given below: for more details on any or all of these, please
see xen/include/public/dom0_ops.h

23

domO0_op(dom0_op_t *op)

Administrative domain operations for domain management. The options
are:

DOMO_CREATEDOMAIN: create a new domain
DOMO_PAUSEDOMAIN: remove a domain from the scheduler run queue.

DOMO_UNPAUSEDOMAIN: mark a paused domain as schedulable once
again.

DOMO_DESTROYDOMAIN: deallocate all resources associated with a
domain

DOMO_GETMEMLIST: get list of pages used by the domain

DOMO_SCHEDCTL:

DOMO_ADJUSTDOM: adjust scheduling priorities for domain

DOMO_BUILDDOMAIN: do final guest OS setup for domain

DOMO_GETDOMAINFO: get statistics about the domain

DOMO_GETPAGEFRAMEINFO:

DOMO_GETPAGEFRAMEINFO?2:

DOMO_IOPL: set /O privilege level

DOMO_MSR: read or write model specific registers

DOMO_DEBUG: interactively invoke the debugger

DOMO_SETTIME: set system time

DOMO_READCONSOLE: read console content from hypervisor buffer
ring

DOMO_PINCPUDOMAIN: pin domain to a particular CPU

DOMO_GETTBUFS: get information about the size and location of the
trace buffers (only on trace-buffer enabled builds)

DOMO_PHYSINFO: get information about the host machine
DOMO_PCIDEV_ACCESS: modify PCI device access permissions
DOMO_SCHED_ID: get the ID of the current Xen scheduler
DOMO_SHADOW_CONTROL: switch between shadow page-table modes

DOMO_SETDOMAININITIALMEM: set initial memory allocation of a
domain

DOMO_SETDOMAINMAXMEM: set maximum memory allocation of a
domain

DOMO_SETDOMAINVMASSIST: set domain VM assist options

24

Most of the above are best understood by looking at the code implementing them (in
xen/common/dom0_ops.c) and in the user-space tools that use them (mostly in
tools/libxc).

A.11 Debugging Hypercalls

A few additional hypercalls are mainly useful for debugging:

console_io(int cmd, int count, char *str)

Use Xen to interact with the console; operations are:
CONSOLEIO _write: Output count characters from buffer str.
CONSOLEIO _read: Input at most count characters into buffer str.

A pair of hypercalls allows access to the underlying debug registers:

set_debugreg(int reg, unsigned long value)

Set debug register reg to value

get_debugreg(int reg)
Return the contents of the debug register reg

And finally:

xen_version(int cmd)
Request Xen version number.

This is useful to ensure that user-space tools are in sync with the underlying hypervisor.

A.12 Deprecated Hypercalls

Xen is under constant development and refinement; as such there are plans to improve
the way in which various pieces of functionality are exposed to guest OSes.
vm_assist(unsigned int cmd, unsigned int type)

Toggle various memory management modes (in particular wrritable page
tables and superpage support).

This is likely to be replaced with mode values in the shared information page since this
is more resilient for resumption after migration or checkpoint.

25

