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Unikraft‘s Build System

Overview
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Unikraft’s 3 Build Stages

(1) Fetch

Download and decompress external sources
e.g., a library hosted on GitHub, Sourceforge

Patch downloaded files

(2) Prepare

Further preparation steps to the sources, for instance:

• Call ./configure of downloaded library sources

• Generate further sources or headers required for building

(3) Compile & Link

Compile sources

Link libraries

Link final images
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Make parameters

▌Unikraft’s base Makefile

$ make A=[APP] L=[LIBRARIES] P=[PLATFORMS] V=[1/0] [target]

Parameter Description

A=[APP] Path to application directory

L=[LIBRARIES] Colon-separated list of paths to external libraries

P=[PLATFORMS] Colon-separated list of paths to external platform libs

V=[1/0] Verbose mode (on/off)

[target] Build target

help Show overview of targets

menuconfig Configure and select target images
(default when there is no .config)

all/images Build everything (default) +libs

libs Build libraries +prepare

prepare Run preparations steps +fetch

fetch Download, extract, and patch external code



Unikraft Libraries

Integrate own libraries and applications
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Libraries/Applications/Platforms: Necessary files

▌Makefile *applications only
 Invoke Unikraft build for simplification

▌Config.uk
Configuration options

• Settings saved as part of .config

Specifying library dependencies
and depending options

▌Makefile.uk
Registration to the build system

Specification of source files

 Extra custom Make rules

• For instance for preparing the sources

▌exportsyms.uk
Masking of symbols

▌Linker.uk *platform libraries only
 Platform-dependent rules for linking final image

.config
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Makefile *applications only

▌Simplify application building

▌Changes to Unikraft base directory and invokes make

UK_ROOT  ?= $(PWD)/../../unikraft
UK_LIBS  ?= $(PWD)/../../libs
LIBS     := $(UK_LIBS)/libA:$(UK_LIBS)/libB

all:
@$(MAKE) -C $(UK_ROOT) A=$(PWD) L=$(LIBS)

$(MAKECMDGOALS):
@$(MAKE) -C $(UK_ROOT) A=$(PWD) L=$(LIBS) (MAKECMDGOALS)
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Config.uk

▌KConfig syntax1

▌Structure:

Title and Dependencies

Configuration parameters
(optional)

[1] https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
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Config.uk: Title and Dependencies for Libraries

menuconfig defines a submenu for the following configuration options

•Note: Use just config without following if-block when the library does not 

have any configuration parameters

select keyword is used to describe dependencies to other libraries

•Supports conditional expressions1

•Multiple select lines are possible for a single configuration

menuconfig LIBMYLIB
bool "ukmylib: my scheduler“
### libraries are off as default
default n
### dependencies
select LIBNOLIBC if !HAVE_LIBC

if LIBMYLIB
### list of configuration parameters goes here

endif
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Config.uk: Dependencies for Applications

Invisible bool config to select dependencies

•Applications are not defining an own submenu. Because just a single 
application can currently be selected for one Unikernel build, applications are 
enabled as default

Like for libraries, select keyword is used to describe dependencies to 

libraries

### Invisible option (no description) that is set as
### default to ‚y‘ in order to select dependencies
config LIBMYAPP

bool
default y
select LIBNOLIBC if !HAVE_LIBC

### list of configuration parameters goes here
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Config.uk: Configuration Parameter

Name-space configuration options!

• Prepend library name in front of parameters: here: LIBMYLIB_

Configurations will appear as CONFIG_[CONFIGNAME]
in the build system and in the sources (include uk/config.h)
(here: CONFIG_LIBMYLIB_SETTING)

[type] can be one of bool, int (unsigned), hex, string:

Advanced options, like choice lists, are documented at:
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt

config LIBMYLIB_SETTING
[type] "[description]"
default [value]
select LIBOTHER

Makefile.uk #include <uk/config.h>

bool y/n „y“ is defined as 1
„n“ is not defined

int Hexadecimal Defined as hexadecimal

hex Hexadecimal Defined as hexadecimal

string String Defined as String
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Makefile.uk

▌Makefile syntax

Unikraft provides helper functions and variables

Unikraft expects specific variables to be filled

▌Structure

Registration

Source files and build flags

Custom prepare rules

External sources (optional)
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Makefile.uk: Registration

▌Registration with addlib / addlib_s helpers1

The first thing that has to be done in a Makefile.uk

Libraries (depending on being enabled)
Replace [libmylib] and CONFIG_LIBMYLIB accordingly:

Applications
Replace [libmyapp] accordingly:

The namespace for variables is defined by application/library name
here: prefixed in uppercase: LIBMYLIB_, LIBMYAPP_

The following variables are populated after the call

The following overrides are available after the call

$(eval $(call addlib_s,[libmylib],$(CONFIG_LIBMYLIB)))

[1] support/build/Makefile.rules

*_BASE Path to library folder

*_BUILD Path to library‘s output/build folder
Note: Place all generated files during building in here, never in the base

$(eval $(call addlib,[libmyapp]))

*_EXPORTS Path to an alternative exportsyms.uk (optional)
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Makefile.uk: External sources (optional)

▌Download one archive with (additional) sources and extract them 
with fetch / fetchas helpers1

Example with lwIP:

.tar.gz, .tgz, .tar.xz, .txz, and .zip are currently supported1

The following variables are populated after this call

▌If some downloaded source files need to be patched, use
patch helper1:

Example with lwIP:

This command applies all patches found in $(LIBLWIP_PATCHDIR) to the sub-
directory $(LIBLWIP_ZIPNAME) of the previously extracted sources

LIBLWIP_ZIPNAME=lwip-2.1.2
LIBLWIP_URL=http://download.savannah.nongnu.org/releases/lwip/$(LIBLWIP_ZIPNAME).zip
$(eval $(call fetch,liblwip,$(LIBLWIP_URL)))

[1] support/build/Makefile.rules

*_ORIGIN Path to folder containing extracted archive files

LIBLWIP_PATCHDIR=$(LIBLWIP_BASE)/patches
$(eval $(call patch,liblwip,$(LIBLWIP_PATCHDIR),$(LIBLWIP_ZIPNAME)))
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Makefile.uk: Source files

▌Full paths to source files are added to the *_SRCS-y list:

Compile rule and target is automatically generated by build system
based on file extension:

• Currently supported: .S, .sx, .s, .c, .C, .cc, .cp, .cxx, .cpp, .CPP, .c++, .lds.S

• .o-binary is created within the library output directory based on the source filename:

–Note: Only the filename without extension matters for the target file name. The source file extension 
and path is irrelevant. In conflicting cases, use variants (see next slide).

The following include and build flag lists apply for a source file:

# Source file from library directory
LIBMYLIB_SRCS-y += $(LIBMYLIB_BASE)/source.c

# Source file from extracted archive
LIBMYLIB_SRCS-y += $(LIBMYLIB_ORIGIN)/another_src.c

CFLAGS-y Global build flags (here: C sources, equivalents for other types exist)

CINCLUDES-y Global includes (here: C sources, equivalents for other types exist)

*_CFLAGS-y Library-internal build flags (here: C sources, equivalents exist)

*_CINCLUDES-y Library-internal includes (here: C sources, equivalents exist)

*_[FILENAME]_FLAGS Source file specific build flags

*_[FILENAME]_INCLUDES Source file specific includes

$(LIBMYLIB_BASE)/source.c.        $(LIBMYLIB_BUILD)/source.o
$(LIBMYLIB_ORIGIN)/another_src.c  $(LIBMYLIB_BUILD)/another_src.o
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Makefile.uk: Source File Variants

▌Variants exist because of two reasons:

Conflicting output file names (previous slide)

Necessity to compile a single source file multiple times with different flags
(e.g., newlib *scanf() variants)

▌Variant names are added with a pipe symbol after source:

…produces:

Variants have their own specific build flags and includes:

LIBMYLIB_SRCS-y += $(LIBMYLIB_BASE)/source.c
LIBMYLIB_SRCS-y += $(LIBMYLIB_BASE)/source.c|variant
LIBMYLIB_SRCS-y += $(LIBMYLIB_ORIGIN)/source.c|origin

$(LIBMYLIB_BASE)/source.c  $(LIBMYLIB_BUILD)/source.o
$(LIBMYLIB_BASE)/source.c|variant  $(LIBMYLIB_BUILD)/source.variant.o
$(LIBMYLIB_ORIGIN)/source.c|origin  $(LIBMYLIB_BUILD)/source.origin.o

*_[FILENAME]_FLAGS Build flags for source file without variant specification

*_[FILENAME]_INCLUDES Includes for source file without variant specification

*_[FILENAME]_[VARIANT]_FLAGS Build flags for source file for variant [VARIANT]

*_[FILENAME]_[VARIANT]_INCLUDES Includes for source file for variant [VARIANT]
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Makefile.uk: Externally Compiled Sources

▌Unikraft supports including externally compiled sources
Cases where it may happen:
Code only available as binary form

Compiling is done by different build system
(e.g., invoked by custom prepare rules)

▌Depending on the type, various places exist to add them:
.o-object files are added to the *_OBJS-y list:

.o-libraries are registered to the global list UK_OLIBS
(remember to use the library switch CONFIG_*):

Static libraries are registered to the global list UK_ALIBS
(remember to use the library switch CONFIG_*):

Note: Shared libraries (.so) are currently not supported

LIBMYLIB_OBJS-y += $(LIBMYLIB_BASE)/prebuilt.o

UK_ALIBS-$(CONIG_LIBMYLIB) += $(LIBMYLIB_BASE)/static_lib.a

UK_OLIBS-$(CONFIG_LIBMYLIB) += $(LIBMYLIB_BASE)/prebuilt_lib.o
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Makefile.uk: Scope of Headers (Includes)

▌Global headers (e.g., library API)
(remember to use the library switch CONFIG_*):

▌Library-Internal headers

▌File-specific headers

▌Equivalent to this, you can set build flags within a specific scope
CFLAGS-$(CONFIG_LIBMYLIB), LIBMYLIB_CFLAGS-y,
LIBMYLIB_MYSRC_FLAGS, LIBMYLIB_MYSRC_VARIANT_FLAGS

CINCLUDES-$(CONFIG_LIBMYLIB) += -I$(LIBMYLIB_BASE)/include/api

LIBMYLIB_CINCLUDES-y += -I$(LIBMYLIB_BASE)/include/internal

# mysrc.c
LIBMYLIB_MYSRC_INCLUDES      += -I$(LIBMYLIB_BASE)/include/mysrc

# Variant var0 of mysrc.c: mysrc.c|var0
LIBMYLIB_MYSRC_VAR0_INCLUDES += -I$(LIBMYLIB_BASE)/include/mysrc
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Makefile.uk: Custom Prepare Rules

▌Reason

Generate files (headers, sources) needed for build

 Invoke parts of ported library build system, like ./configure

▌Defined as custom Make rules

Use build_cmd to prettify the output1

(in cases where build_cmd is not applicable use verbose_cmd)

▌If used, set marker of fetch stage as dependency

Download marker: $(LIBMYLIB_BUILD)/.origin

Patched marker: $(LIBMYLIB_BUILD)/.patched

▌Register generated files to prepare stage

UK_PREPARE-$(CONFIG_LIBMYLIB) += [generated file/phony]

$(LIBMYLIB_BUILD)/generated.h: [dependencies]
$(call build_cmd,NM,libmylib,$@,$(NM) -n $(LIBMYLIB_BASE)/symtab.in > $@)

[1] support/build/Makefile.rules
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exportsyms.uk

▌Re-masks the scope of each symbol of a library
Re-defines for each symbol if it is available for final linking

 Intended to reduce potential clashing of symbols

▌List of symbol names that should be available globally for final 
linking. Non-listed symbols become private to the library.
 Example (libnolibc):

▌Note: The build system will throw a warning when no exportsyms.uk
file is provided
 The scope of each library symbol stays unchanged in such a case

asprintf
vasprintf

# comments are ignored
opterr
optind
optopt
optreset
optarg
getopt
[...]



Best Practices
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Best Practices

▌Porting existing libraries/applications is a challenging task

 Existing sources often only fit to their build and configuration system

Often not intended to run on something else than Linux (assumptions to the OS)

▌If possible, compile all sources with Unikraft

 Including external build binaries is risky

• Build flags may be incompatible (e.g., register usage/calling convention, LTO)

• Mismatch of depending libraries (external vs. Unikraft‘s version)

▌Learn from existing build system

 Extract list of source files and build flags when compiling with original build system

Study steps that generate files needed for the build

• Try to run ./configure with settings fitting to Unikraft environment

• It is also possible to call ./configure from Unikraft as prepare step

▌Provide initial stubs for missing symbols

Completing compiling & linking (but not running) first,
helps to get an better overview of missing functionality in Unikraft 




